
stable fixtures problem – many to many
extension of stable roommates problem

Saurabh Garg
July 1, 2016

Purdue University

idea

∙ 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

∙ Stable 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

1

idea

∙ 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

∙ Stable 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

1

idea

∙ 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

∙ Stable 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

1

idea

∙ 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

∙ Stable 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

1

idea

∙ 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

∙ Stable 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

1

idea

∙ 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

∙ Stable 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

1

idea

∙ 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

∙ Stable 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

1

idea

∙ 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

∙ Stable 1–Matching :

a

b

c

d

8 7 2

6

3

1

a

b d

c

1

abstract

Stable fixtures problem is generalization of Stable Roommates
problem in which each participant seeks to be matched with a
number of others.

2

formal definition of problem

∙ Given a general weighted directed graph G and an array b(v) of
non negative values.

∙ The objective is to chose a subset of edges M such that at most
b(v) edges in M are incident on each vertex v, and subject to this
restriction we maximize the sum of the weights of the edges in
M.

3

formal definition of problem

∙ Given a general weighted directed graph G and an array b(v) of
non negative values.

∙ The objective is to chose a subset of edges M such that at most
b(v) edges in M are incident on each vertex v, and subject to this
restriction we maximize the sum of the weights of the edges in
M.

3

algorithm

algorithm

The Algorithm is in two phase :

∙ Phase-1 : Reduced the preference list by a sequence of bids and
rejections

∙ Phase-2 : Removes cycle to conclude the existence of stable
matching

5

algorithm

The Algorithm is in two phase :

∙ Phase-1 : Reduced the preference list by a sequence of bids and
rejections

∙ Phase-2 : Removes cycle to conclude the existence of stable
matching

5

phase–1

Idea : This phase involves a sequence of proposals from each vertex
v for another vertices’s in the order of decreasing weights until they
have made no less then b(v) proposals which were not rejected

for all i in N do
while |Ai| < min(bi, |Pi|) do ▷ Ai is list of proposals made

xj ← first player not in Ai
xi bids for xj and xj becomes target for xi
if |Bj| ≥ bj then ▷ Bi is list of proposals received

xk ← cjth bidder for xj
for all successors of xl of xk in Pj do

Remove all xl neighbours from P’s, A’s and B’s(if any)
▷ This may lead to atmost one rejection by xj

end for
end if

end while
end for

6

example

x1 (2) : x2 x3 x4 x5
x2 (1) : x3 x4 x5 x1
x3 (1) : x4 x5 x1 x2
x4 (1) : x5 x1 x2 x3
x5 (1) : x1 x2 x3 x4
Fig : Initial preference list

7

illustration

x1 (2) : x2 x3 x4 x5
x2 (1) : x3 x4 x5 x1
x3 (1) : x4 x5 x1 x2
x4 (1) : x5 x1 x2 x3
x5 (1) : x1 x2 x3 x4

x1

x2

x3

x4

x5

4

3

2

1

x1

8

illustration

x1 (2) : x2 x3 x4 x5
x2 (1) : x3 x4 x5 x1
x3 (1) : x4 x5 x1 x2
x4 (1) : x5 x1 x2 x3
x5 (1) : x1 x2 x3 x4

x1

x2

x3

x4

x5

4

3

2

1

x1

x2

8

illustration

x1 (2) : x2 x3 x4 x5
x2 (1) : x3 x4 x5 x1
x3 (1) : x4 x5 x1 x2
x4 (1) : x5 x1 x2 x3
x5 (1) : x1 x2 x3 x4

x1

x2

x3

x4

x5

4

3

2

1

x1

x2

x3

8

illustration

x1 (2) : x2 x3 x4 x5
x2 (1) : x3 x4 x5 x1
x3 (1) : x4 x5 x1 x2
x4 (1) : x5 x1 x2 x3
x5 (1) : x1 x2 x3 x4

x3

x4

x5

x1

x2

4

3

2

1

x3

9

illustration

x1 (2) : x2 x3 x4 x5
x2 (1) : x3 x4 x5 x1
x3 (1) : x4 x5 x1 x2
x4 (1) : x5 x1 x2 x3
x5 (1) : x1 x2 x3 x4

x3

x4

x5

x1

x2

4

3

2

1

x3

x1

9

illustration

x1 (2) : x2 x3 x4 x5
x2 (1) : x3 x4 x5 x1
x3 (1) : x4 x5 x1 x2
x4 (1) : x5 x1 x2 x3
x5 (1) : x1 x2 x3 x4

x3

x4

x5

x1

x2

4

3

2

1

x3

x1

x2

9

illustration

x3

x4

x5

x1

x2

4

3

2

1

x3

x1

x2

x2

x3

x4

x5

x1

4

3

2

1

x2

x3

10

example

x1 (2) : x2 x3 x4 x5
x2 (1) : x4 x5 x1
x3 (1) : x5 x1
x4 (1) : x1 x2
x5 (1) : x1 x2 x3

Fig :Reduced Preference list after Phase-1

11

phase–2

Uses the above reduced Graph
Idea : This phase search for possible cycles and removes them. This
phase terminates when no list is long* or atleast one list is short**.
*long : if |pi| > min(bi,Pi) **short if |pi| < min(bi,Pi)

This Phase primarily comprises of two steps :

∙ (i) Cycle Detection
∙ (ii) Cycle removal

12

phase–2

function Detect_Cycle
Cycle = ∅
while Until any xi repeats do

xik = last in xjk’s list who was not proposed (worst bidder)
xj(k+1) = first in xik’s list who was not proposed (next target)

end while
return Cycle ▷ Cycle is = ((xi0, xj0),(xik, xjk)...)

end function
while (there is no short list and some long list) do

ρ =Detect_Cycle()
Remove cycle from the graph

end while
if some list is short then

No stable matching
else

Stable Matching exist and reduced G is itself the answer
end if 13

example

f: next target l :worst bidder

x1 (2) : x2 x3 x4 x5
x2 (1) : x4 x5 x1
x3 (1) : x5 x1
x4 (1) : x1 x2
x5 (1) : x1 x2 x3

Fig :Reduced Preference list after Phase-1

x1 x5
l

14

example

f: next target l :worst bidder

x1 (2) : x2 x3 x4 x5
x2 (1) : x4 x5 x1
x3 (1) : x5 x1
x4 (1) : x1 x2
x5 (1) : x1 x2 x3

Fig :Reduced Preference list after Phase-1

x1 x5 x2 x1
l f l

14

example

f: next target l :worst bidder

x1 (2) : x2 x3 x4 x5
x2 (1) : x4 x5 x1
x3 (1) : x5 x1
x4 (1) : x1 x2
x5 (1) : x1 x2 x3

Fig :Reduced Preference list after Phase-1

x1 x5 x2 x1 x4

x2

l f l fl

14

example

f: next target l :worst bidder

x1 (2) : x2 x3 x4 x5
x2 (1) : x4 x5 x1
x3 (1) : x5 x1
x4 (1) : x1 x2
x5 (1) : x1 x2 x3

Fig :Reduced Preference list after Phase-1

x1 x5 x2 x1 x4

x2x5x3

l f l fl

fl

14

example

f: next target l :worst bidder

x1 (2) : x2 x3 x4 x5
x2 (1) : x4 x5 x1
x3 (1) : x5 x1
x4 (1) : x1 x2
x5 (1) : x1 x2 x3

Fig :Reduced Preference list after Phase-1

x1 x5 x2 x1 x4

x2x5x3

l f l fl

fl

f

14

example

x1 (2) : x3 x4
x2 (1) : x5
x3 (1) : x1
x4 (1) : x1
x5 (1) : x2

Fig : Preference list after Phase-2

15

comparison

relationship with optimal solution

The solution generated by this algorithm is always stable whereas
there is possibility that optimal solution is not stable.
For example :

∙ (i) Optimal Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

a b dc

∙ (ii) Stable Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

b c

17

relationship with optimal solution

The solution generated by this algorithm is always stable whereas
there is possibility that optimal solution is not stable.
For example :

∙ (i) Optimal Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

a b dc

∙ (ii) Stable Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

b c

17

relationship with optimal solution

The solution generated by this algorithm is always stable whereas
there is possibility that optimal solution is not stable.
For example :

∙ (i) Optimal Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

a b dc

∙ (ii) Stable Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

b c

17

relationship with optimal solution

The solution generated by this algorithm is always stable whereas
there is possibility that optimal solution is not stable.
For example :

∙ (i) Optimal Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

a b dc

∙ (ii) Stable Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

b c

17

relationship with optimal solution

The solution generated by this algorithm is always stable whereas
there is possibility that optimal solution is not stable.
For example :

∙ (i) Optimal Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

a b dc

∙ (ii) Stable Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

b c

17

relationship with optimal solution

The solution generated by this algorithm is always stable whereas
there is possibility that optimal solution is not stable.
For example :

∙ (i) Optimal Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

a b dc

∙ (ii) Stable Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

b c

17

relationship with optimal solution

The solution generated by this algorithm is always stable whereas
there is possibility that optimal solution is not stable.
For example :

∙ (i) Optimal Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

a b dc

∙ (ii) Stable Solution

a b c d
9−ϵ 9+ϵ 9−ϵ

b c

17

b-suitor

∙ B-Suitor algorithms generates a half approximation solution for
general undirected graph. The solution generated as mentioned
above is also stable.

∙ For general undirected graphs phase–1 of the algorithm is
sufficient because preference list is symmetric.

∙ But for general directed graphs we need phase–2 after phase–1
to symmetrize the graph so that resulted graph is stable and
each edge has at most b(v) edges going out of them.

18

b-suitor

∙ B-Suitor algorithms generates a half approximation solution for
general undirected graph. The solution generated as mentioned
above is also stable.

∙ For general undirected graphs phase–1 of the algorithm is
sufficient because preference list is symmetric.

∙ But for general directed graphs we need phase–2 after phase–1
to symmetrize the graph so that resulted graph is stable and
each edge has at most b(v) edges going out of them.

18

b-suitor

∙ B-Suitor algorithms generates a half approximation solution for
general undirected graph. The solution generated as mentioned
above is also stable.

∙ For general undirected graphs phase–1 of the algorithm is
sufficient because preference list is symmetric.

∙ But for general directed graphs we need phase–2 after phase–1
to symmetrize the graph so that resulted graph is stable and
each edge has at most b(v) edges going out of them.

18

conclusion

∙ Thus Phase–1 of this algorithm resembles with B–Suitor and is
sufficient for weighted undirected graph.

∙ But we need phase–2 in case of directed weighted graphs.

19

conclusion

∙ Thus Phase–1 of this algorithm resembles with B–Suitor and is
sufficient for weighted undirected graph.

∙ But we need phase–2 in case of directed weighted graphs.

19

implementation

details

∙ Preprocessing : Graph we get as input is unsymmertric
weighted graph. In this phase all unsymmetric edges are
removed and graph is sorted in order of decreasing weights.
Complexity is O(mlog(n))

∙ Phase-1 : In the current implementation graph is stored as
vector of maps and in this phase by a sequence of bids and
rejections graph is reduced. Complexity is O(mlog(n)).

∙ Phase-2 : In the current implementation using sets of bidders
and proposers cycles are identified and removed until there are
no more cycles which mean graph becomes symmetric or
atleast one list becomes short. Complexity is O(m).

21

details

∙ Preprocessing : Graph we get as input is unsymmertric
weighted graph. In this phase all unsymmetric edges are
removed and graph is sorted in order of decreasing weights.
Complexity is O(mlog(n))

∙ Phase-1 : In the current implementation graph is stored as
vector of maps and in this phase by a sequence of bids and
rejections graph is reduced. Complexity is O(mlog(n)).

∙ Phase-2 : In the current implementation using sets of bidders
and proposers cycles are identified and removed until there are
no more cycles which mean graph becomes symmetric or
atleast one list becomes short. Complexity is O(m).

21

details

∙ Preprocessing : Graph we get as input is unsymmertric
weighted graph. In this phase all unsymmetric edges are
removed and graph is sorted in order of decreasing weights.
Complexity is O(mlog(n))

∙ Phase-1 : In the current implementation graph is stored as
vector of maps and in this phase by a sequence of bids and
rejections graph is reduced. Complexity is O(mlog(n)).

∙ Phase-2 : In the current implementation using sets of bidders
and proposers cycles are identified and removed until there are
no more cycles which mean graph becomes symmetric or
atleast one list becomes short. Complexity is O(m).

21

analysis

Num. of Nodes Num. of edges Time for Phase–1 No. of cycles Time for Phase–2 Output
10 (2) 62 0.0001 2 0.00001 Exist

735323 (10) 5158388 3.66433 0 0 Exist
916428 (2) 5105039 3.0453 9 0.174925 Does not exist
916428 (5) 5105039 2.6884 2 0.0571 Exist
1382908 (20) 16539643 7.72464 186 3.76724 Does not exist
2394385 (10) 5021410 1.7377 0 0 Exist

Table: Analysis for various sparse graphs

22

analysis

Num. of Nodes Num. of edges Time for Phase–1 No. of cycles Time for Phase–2 Output
10 (2) 62 0.0001 2 0.00001 Exist
735323 (10) 5158388 3.66433 0 0 Exist

916428 (2) 5105039 3.0453 9 0.174925 Does not exist
916428 (5) 5105039 2.6884 2 0.0571 Exist
1382908 (20) 16539643 7.72464 186 3.76724 Does not exist
2394385 (10) 5021410 1.7377 0 0 Exist

Table: Analysis for various sparse graphs

22

analysis

Num. of Nodes Num. of edges Time for Phase–1 No. of cycles Time for Phase–2 Output
10 (2) 62 0.0001 2 0.00001 Exist
735323 (10) 5158388 3.66433 0 0 Exist
916428 (2) 5105039 3.0453 9 0.174925 Does not exist

916428 (5) 5105039 2.6884 2 0.0571 Exist
1382908 (20) 16539643 7.72464 186 3.76724 Does not exist
2394385 (10) 5021410 1.7377 0 0 Exist

Table: Analysis for various sparse graphs

22

analysis

Num. of Nodes Num. of edges Time for Phase–1 No. of cycles Time for Phase–2 Output
10 (2) 62 0.0001 2 0.00001 Exist
735323 (10) 5158388 3.66433 0 0 Exist
916428 (2) 5105039 3.0453 9 0.174925 Does not exist
916428 (5) 5105039 2.6884 2 0.0571 Exist

1382908 (20) 16539643 7.72464 186 3.76724 Does not exist
2394385 (10) 5021410 1.7377 0 0 Exist

Table: Analysis for various sparse graphs

22

analysis

Num. of Nodes Num. of edges Time for Phase–1 No. of cycles Time for Phase–2 Output
10 (2) 62 0.0001 2 0.00001 Exist
735323 (10) 5158388 3.66433 0 0 Exist
916428 (2) 5105039 3.0453 9 0.174925 Does not exist
916428 (5) 5105039 2.6884 2 0.0571 Exist
1382908 (20) 16539643 7.72464 186 3.76724 Does not exist

2394385 (10) 5021410 1.7377 0 0 Exist

Table: Analysis for various sparse graphs

22

analysis

Num. of Nodes Num. of edges Time for Phase–1 No. of cycles Time for Phase–2 Output
10 (2) 62 0.0001 2 0.00001 Exist
735323 (10) 5158388 3.66433 0 0 Exist
916428 (2) 5105039 3.0453 9 0.174925 Does not exist
916428 (5) 5105039 2.6884 2 0.0571 Exist
1382908 (20) 16539643 7.72464 186 3.76724 Does not exist
2394385 (10) 5021410 1.7377 0 0 Exist

Table: Analysis for various sparse graphs

22

analysis

Num. of Nodes Num. of edges Time for Phase–1 No. of cycles Time for Phase–2 Output
10 (2) 62 0.0001 2 0.00001 Exist
735323 (10) 5158388 3.66433 0 0 Exist
916428 (2) 5105039 3.0453 9 0.174925 Does not exist
916428 (5) 5105039 2.6884 2 0.0571 Exist
1382908 (20) 16539643 7.72464 186 3.76724 Does not exist
2394385 (10) 5021410 1.7377 0 0 Exist

Table: Analysis for various sparse graphs

22

Questions?

23

	Algorithm
	Comparison
	Implementation

