
Language Modelling for Code-Switched Text

Bachelors Thesis Project

Bachelors of Technology
in

Computer Science and Engineering

by

Tanmay Parekh

(140100011)

in co-ordination with

Saurabh Garg

(140070003)

under the guidance of

Prof. Preethi Jyothi

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

May, 2018

Abstract

Code-switching is a routine phenomenon in multilingual communities, wherein speakers use switch between two or
more distinct languages within a single utterance. Due to this mixing, there are significant changes in the structure of
the language. Additionally, due to lack of code-switched textual data, standard models aren’t robust enough and don’t
generalize well.

In this report, we present a simple and elegant approach to language modeling for bilingual code-switched text.
Since code-switching is a blend of two or more different languages, a standard bilingual language model can be improved
upon by using structures of the monolingual language models. We propose a novel technique called Dual Language
Models, which involves building two complementary monolingual n-gram language models and combining them using
a probabilistic model for switching between the two.

In the latter part, we also extend this idea to deep learning language models. We devise a new architecture called
Dual RNNLM, which modifies the recurrent unit of the standard RNNLM architecture to better learn the structures of
the two languages and also models the switch better. We show variants and modifications of the architecture and their
respective analysis.

We evaluate the efficacy of our approach using a conversational Mandarin-English speech corpus. We prove the
robustness of our model by showing significant improvements in perplexity measures over the standard bilingual
language model without the use of any external information. We also observe similar consistent improvements in
automatic speech recognition error rates for n-gram Dual Language Models. We also explore the use of various external
information like external data, embeddings and semantic features to improve the existing language model. Later, we also
use synthetic data from generative models to pre-train and improve the language models.

Declaration

I declare that this written submission represents my ideas in my own words and where other’s
ideas or words have been included, I have adequately cited and referenced the original sources.
I also declare that I have adhered to all principles of academic honesty and integrity and have
not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I
understand that any violation of the above will be cause for disciplinary action by the Institute
and can also evoke penal action from the sources which have thus not been properly cited or from
whom proper permission has not been taken when needed.

Date: 6th June, 2018 Tanmay Parekh

Place: IIT Bombay, Mumbai Roll No: 140100011

Acknowledgements

This report is an outcome of my work with the coordination of Saurabh Garg under the guidance
of Prof. Preethi Jyothi on Language Modelling for Code-Switched Text. I am thankful to these
people and others who have been instrumental in helping me out throughout this project. More
importantly, I would like to express my sincere gratitude towards my supervisor Prof. Preethi
Jyothi for her guidance and encouragement. My research in language modelling and building
speech recognition systems is being driven by her vision and support. It was immensely helpful
in gaining the understanding required for writing this report.

Secondly, I would also like to take this opportunity to thank Saurabh Garg for his continuous
support throughout the project. His ideation has been really key towards the research output of
this project.

A special note: A good portion of the content of the report comes from two papers, both au-
thored by Saurabh Garg, Tanmay Parekh and Preethi Jyothi. One has been accepted at Interspeech
’18 [14] and the other has been submitted to a top-tier NLP conference.

2

Contents

1 Introduction 1

1.1 N-Gram LMs . 1

1.2 RNNLMs . 2

2 Related Work 3

3 N-gram Dual Language Model 4

3.1 The 2-player Game . 4

3.2 Framework . 5

3.3 Implementation as FST . 6

3.4 Monolingual LMs for the DLM construction . 7

4 Dual RNNLM 8

4.1 The Idea . 8

4.2 Dual LSTM cell . 9

4.3 Input encoding layer . 10

4.4 Output combination layer . 10

4.4.1 Common Softmax . 10

4.4.2 Trainable switch parameter . 11

4.5 Context Sharing . 11

4.5.1 No sharing . 12

4.5.2 Direct sharing . 12

4.5.3 Damped sharing . 12

4.5.4 Masked sharing . 12

5 Same-Source Pre-Training 14

5.1 Naïve Sampling . 14

5.2 Scheduled Sampling . 15

5.3 SeqGAN . 15

5.4 D-RNNLM SeqGAN . 15

6 Using External Knowledge 16

6.1 Additional Monolingual Data . 16

6.2 Pre-trained Embeddings . 17

6.3 Syntactic and Semantic Features . 17

6.4 Artificially Derived Data . 17

7 Experiments and Results 19

7.1 Data description . 19

7.2 N-gram LM . 20

7.2.1 Data distribution . 20

7.2.2 Perplexity experiments . 20

7.2.3 ASR experiments . 21

7.3 RNNLMs . 22

7.3.1 Data Distribution & Tokenisation . 22

7.3.2 Improvements over Baseline . 23

7.3.3 Using External Knowledge . 24

8 Discussion 26

8.1 N-gram LMs . 26

8.1.1 Code-switching boundaries . 26

8.1.2 n-gram token distribution . 27

8.1.3 Illustrative examples . 27

8.1.4 Effect of Trigrams . 28

8.2 RNNLMs . 28

8.2.1 Perplexity Analysis . 28

8.2.2 SeqGAN Text Quality . 28

9 Other Explorations and Future Work 30

Chapter 1

Introduction

Code-switching is a commonly occurring phenomenon in multilingual communities, wherein a
speaker switches between languages within the span of a single utterance [4]. Building speech and
language technologies to handle code-switching has become a fairly active area of research and
presents a number of interesting technical challenges [9]. Language models for code-switched text
is an important problem with implications to downstream applications such as speech recognition
and machine translation of code-switched data.

Our approach towards building better language models can be distinctively split into two
major regimes - (1) n-gram LMs (Statistical approach) and (2) RNNLMs (Deep Learning approach).
We build simple baselines and explore mechanisms to improve upon them in both these regimes.

1.1 N-Gram LMs

A very naïve solution towards building such a language model would be to directly use a n-gram
based bilingual language model. However, this can be significantly improved upon by using
knowledge of the individual base languages, especially in such a limited data setting. Many
sophisticated approaches relying on translation models have been proposed to overcome this
challenge and are discussed in Chapter 2, but they use external resources to build the translation
model in the first place.

We introduce an alternative – and simpler – approach to address the challenge of limited data
in the context of code-switched text without use of any external resources. At the heart of our
solution is a n-gram dual language model (DLM) that has roughly the complexity of two monolingual
language models combined. A DLM combines two such models and uses a probabilistic model to
switch between them. Its simplicity makes it amenable for generalization in a low-data context.

1

We further discuss the framework of DLMs and their benefits over the standard bilingual model
in Chapter 3.

1.2 RNNLMs

A more natural choice for building robust language models would be to use recurrent neural
networks (RNNs) [22], which yield state-of-the-art language models in the case of monolingual
text. We explore a few major mechanisms to improve upon such a baseline model and are briefly
described below.

• At first, we alter the structure of the basic RNN unit to include separate components that focus
on each language in code-switched text separately while coordinating with each other to retain
contextual information across code-switch boundaries. Our new model is called a Dual RNN
Language Model (D-RNNLM), discussed in detail in Chapter 4.

• Secondly, we also propose using same-source pretraining – i.e., pretraining the model using data
sampled from a generative model which is itself trained on the given training data – before
training the model on the same training data (discussed further in Chapter 5). We find this to
be surprisingly effective.

• We also explore various ways to use external knowledge about the individual languages, which
includes additional monolingual data, pre-trained embeddings, translation tables, various
semantic features like POS tags, brown clusters, etc. The various settings are further described
in Chapter 6.

We study the improvements due to these techniques under various settings. We use perplexity
as a proxy to measure the quality of the language model, evaluated on code-switched text in
English and Mandarin from the SEAME corpus. We describe the dataset and the experiments in
detail in Chapter 7. Further discussion on the results obtained are delineated in Chapter 8. We
discuss other ideas which have been tried and can be further explored in Future Work (Chapter
9).

Chapter 2

Related Work

There have been many past efforts towards enhancing the capability of language models for
code-switched text. Prior work on building such language models for code-switched speech can
be broadly categorized into three sets of approaches:

(1) Without the use of external data. This work includes the use of normal n-gram and RNN
based language models. Adel et al. [1] presented an approach to convert RNN based LMs into
backoff n-gram LMs for efficient decoding within ASR systems.

(2) With the help of external information source. Adel et al. [2, 3] explored the use of POS
taggers, syntactic and semantic features extracted from code-switched data for factored language
models to enhance the capability of language models. Yeh et al. [30] employed class-based n-gram
models that cluster words from both languages into classes based on POS and perplexity-based
features. Vu et al. [27] used an SMT system to enhance the language models. Another common
approach is to separately train language models on monolingual texts and then interpolate them
to build code-switched language model [7, 16, 20]. With extra monolingual data, Baheti et al. [5]
explored various curriculum learning strategies for training code-mixed language models.

(3) By incorporating linguistic constraints. Linguists [23, 25] discovered specific constraints
know as the “equivalence constraint", which are satisfied when people switch between languages.
Chan et al. [10] used grammar to model code-switching languages. Li and Fung [18, 19] incor-
porated syntactic constraints by a code-switch boundary prediction model and Functional Head
constraints into language modeling.

3

Chapter 3

N-gram Dual Language Model

Amongst the various statistical approaches, n-gram LMs have been one of the most basic and
simplest to build and use. They can also be encoded as a finite state machine (FST) and can be further
used in various applications like speech recognition systems, etc. There are various extensions and
variants of the traditional n-gram LMs which have enhanced it even more (class-based n-gram
LMs, sequence n-gram LMs, etc). Here we consider the traditional n-gram LM with backoff and
interpolation and various variants for smoothing like Kneyser-Ney and Good Turing. This forms
the strong baseline language model.

Since the code-switched text comprises of two monolingual phrases mixed together, we believe
that the individual phrases can be separately modelled in a better fashion and later can be
combined. This forms the basis of the motivation behind n-gram dual language models. Below we
describe n-gram DLM in more detail via a 2-player game.

3.1 The 2-player Game

We define a n-gram dual language model (DLM) to have the following 2-player game structure. A
sentence (or more generally, a sequence of tokens) is generated via a co-operative game between
the two players who take turns. During its turn a player generates one or more words (or tokens),
and either terminates the sentence or transfers control to the other player. Optionally, while
transferring control, a player may send additional information to the other player (e.g., the last
word it produced), and also may retain some state information (e.g., cached words) for its next
turn. At the beginning of the game one of the two players is chosen probabilistically.

In the context of code-switched text involving two languages, we consider a DLM wherein the
two players are each in charge of generating tokens in one of the two languages. Suppose the two

4

languages have (typically disjoint) vocabularies V1 and V2. Then the alphabet of the output tokens
produced by the first player in a single turn is V1 ∪ {〈sw〉, 〈/s〉}, 〈sw〉 denotes the switching – i.e.,
transferring control to the other player – and 〈/s〉 denotes the end of sentence, terminating the
game. We shall require that a player produces at least one token before switching or terminating,
so that when V1 ∩ V2 = ∅, any non-empty sentence in (V1 ∪ V2)

∗ uniquely determines the
sequence of corresponding outputs from the two players when the DLM produces that sentence.
(Without this restriction, the players can switch control between each other arbitrarily many times,
or have either player terminate a given sentence.)

To illustrate how this game would be played, we can assume the sentence to be generated to be:

Sentence: Kya aap credit card accept karte ho?

We can assume Player 1 to have Hindi vocabulary and Player 2 to have English vocabulary. The
game played to generate the above sentence would be:

Player 1: Kya aap <sw>
Player 2: credit card accept <sw>
Player 1: karte ho? </s>

3.2 Framework

Here, we explore a particularly simple DLM that is constructed from two given LMs for the two
languages. More precisely, we shall consider an LM L1 which produces 〈/s〉-terminated strings
in (V1 ∪ {〈sw〉})∗ where 〈sw〉 indicates a span of tokens in the other language (so multiple 〈sw〉
tokens cannot appear adjacent to each other), and symmetrically an LM L2 which produces strings
in (V2 ∪ {〈sw〉})∗.

In Section 3.4, we will describe how such monolingual LMs can be constructed from code-
switched data. Given L1 and L2, we shall splice them together into a simple DLM (in which
players do not retain any state between turns, or transmit state information to the other player at
the end of a turn). Below we explain this process in a more formal sense (for bi-gram language
models).

Given two language models L1 and L2 with conditional probabilities P1 and P2 that satisfy the
following conditions:

P1[〈/s〉 | 〈s〉] = P2[〈/s〉 | 〈s〉] = 0 (3.1)

P1[〈sw〉 | 〈s〉] + P2[〈sw〉 | 〈s〉] = 1 (3.2)

P1[〈sw〉 | 〈sw〉] = P2[〈sw〉 | 〈sw〉] = 0 (3.3)

P1[〈/s〉 | 〈sw〉] = P2[〈/s〉 | 〈sw〉] = 0 (3.4)

We impose conditions (3.1)-(3.4) on the given LMs. Condition (3.1) which disallows empty
sentences in the given LMs (and the resulting LM) is natural, and merely for convenience.
Condition (3.2) states the requirement that L1 and L2 agree on the probabilities with which each
of them gets the first turn. Conditions (3.3) and (3.4) require that after switching at least one token
should be output before switching again or terminating. If the two LMs are trained on the same
data as described in Section 3.4, all these conditions would hold.

We define a combined language model L, with conditional probabilities P, as follows:

P[w′ | w] =


P1[w′ | 〈s〉] if w′ ∈ V1

P2[w′ | 〈s〉] if w′ ∈ V2

0 if w′ = 〈/s〉
for w = 〈s〉

P[w′ | w] =

P1[w′ | w] if w′ ∈ V1 ∪ {〈/s〉}
P1[〈sw〉 | w] · P2[w′ | 〈sw〉] if w′ ∈ V2

for w ∈ V1

P[w′ | w] =

P2[w′ | w] if w′ ∈ V2 ∪ {〈/s〉}
P2[〈sw〉 | w] · P1[w′ | 〈sw〉] if w′ ∈ V1

for w ∈ V2

To see that P[w′ | w] as described above is a well-defined probability distribution, we check
that ∑w′ P[w′|w] = 1 for all three cases of w, where the summation is over w′ ∈ V1 ∪V2 ∪ {〈/s〉}.
When w = 〈s〉, ∑w′ P[w′|w] equals

∑
w′∈V1

P1[w′|〈s〉] + ∑
w′∈V2

P2[w′|〈s〉]

= (1− P1[〈sw〉 | 〈s〉]) + (1− P2[〈sw〉 | 〈s〉]) = 1

where the first equality is from (3.1) and the second equality is from (3.2).

When w ∈ V1, ∑w′ P[w′|w] is

∑
w′∈V1∪〈/s〉

P1[w′|w] + P1[〈sw〉 | w] ∑
w′∈V2

P2[w′|〈sw〉]

= ∑
w′∈V1∪〈/s〉

P1[w′|w] + P1[〈sw〉 | w] = 1.

The case of w ∈ V2 follows symmetrically.

3.3 Implementation as FST

Figure 3.1 illustrates how to implement a DLM as a finite-state machine using finite-state machines
for the monolingual bigram LMs, L1 and L2. The start states in both LMs, along with all the

P1[hswi | w]

P2[w
0 | hswi]

w0

w

L1

L2

Figure 3.1: DLM using two monolingual LMs, L1 and L2, implemented as a finite-state machine.

arcs leaving these states, are deleted; a new start state and end state is created for the DLM with
accompanying arcs as shown in Figure 3.1. The two states maintaining information about the 〈sw〉
token can be split and connected, as shown in Figure 3.1, to create paths between L1 and L2.

As illustrated in Figure 3.1, we can observe that DLM can be implemented as a FST by addition
of a few states and corresponding arcs. The complexity of this FST is slightly greater than the
individual monolingual FSTs and will be much lesser than the bilingual n-gram FST in the worst
case scenario.

3.4 Monolingual LMs for the DLM construction

Given a code-switched text corpus D, we will derive two complementary corpora, D1 and D2, from
which we construct bigram models L1 and L2 as required by the DLM construction described
in Section 3.2. In D1, spans of tokens in the second language are replaced by a single token 〈sw〉.
D2 is constructed symmetrically. Standard bigram model construction on D1 and D2 ensures
conditions (3.1) and (3.2). The remaining two conditions may not naturally hold: Even though
the data in D1 and D2 will not have consecutive 〈sw〉 tokens, smoothing operations may assign a
non-zero probability for this; also, both LMs may assign non-zero probability for a sentence to end
right after a 〈sw〉 token, corresponding to the sentence having ended with a non-empty span of
tokens in the other language. These two conditions are therefore enforced by reweighting the LMs.

Chapter 4

Dual RNNLM

Statistical language models are simple in design and usage, but with the advent of deep learning,
they were consistently outperformed. Today, recurrent neural networks based language models
(RNNLMs) yield the state-of-the-art perplexity numbers in the case of monolingual text [22]. In the
past few years, many more variants have been introduced in terms of the basic rnn unit (LSTMs,
GRUs) as well as the overall architecture (FLMs, class-based LMs).

Apart from baseline performance, it will be much easier to integrate abundant monolingual
data to improve the bilingual language model for RNNLMs as compared to n-gram DLMs. The
improvements shown as well will be more robust in comparison. As described in Chapter 3, the
vanilla version of DLMs don’t share any context when switching from one language to another.
We aim to overcome this drawback by introducing context-sharing across switching points and
capturing long-term cross-lingual dependencies.

All of these factors contributed towards shifting from the statistical models to deep-learning
based models for language modelling. The baseline model we consider here is the standard
RNNLM with LSTM unit as the recurrent unit. We fine-tune across various parameters (discussed
further in Chapter 7) to build a strong and robust baseline.

4.1 The Idea

Towards improving the modeling of code-switched text, we introduce Dual RNN Language Models
(D-RNNLMs). The philosophy behind D-RNNLMs, an extension of the idea for DLMs, is that two
different sets of neurons will be trained to (primarily) handle the two individual languages. For
the same, we explicitly model the individual stretches of both the languages via separate LSTM
units. We facilitate sharing of context across the LSTM units to capture cross-lingual long-term

8

Out

LSTM (L1)0

0 LSTM (L0)

#0 #1

Emb0

Emb10

0

τ2b2

Out

LSTM (L1)0

0 LSTM (L0)

#0 #1

Emb0

Emb10

0

τ1b1

Figure 4.1: Illustration of the dual RNNLM (see the text for a detailed description). The highlighted left-to-right path
(in green) indicates the flow of state information, when λ1 = 0 and λ2 = 1 (corresponding to token c1

belonging to language L0 and c2 belonging to L1). The highlighted bottom-to-top path (in orange) indicates
the inputs and outputs.

dependencies.

There are various components to building the D-RNNLM, namely the LSTM unit, the input
encoding layer and the output combination layer. We have tried various variants for each of the
components and are explained in more detail. The details of the best working architecture and the
corresponding implementation are explained in the Section 4.2 below.

4.2 Dual LSTM cell

As shown in Figure 4.1, the D-RNNLM consists of a “Dual LSTM cell" and an input encoding
layer. The Dual LSTM cell, as the name indicates, has two long short-term memory (LSTM) cells
within it. The two LSTM cells are designated to accept input tokens from the two languages L0

and L1 respectively, and produce an (unnormalized) output distribution over the tokens in the

Figure 4.2: Illustration of input encoding layer

same language. When a Dual LSTM cell is invoked with an input token τ, the two cells will be
invoked sequentially. The first (upstream) LSTM cell corresponds to the language that τ belongs
to, and gets τ as its input. It passes on the resulting state to the downstream LSTM cell (which
takes a dummy token as input). The unnormalized outputs from the two cells are combined and
passed through a soft-max operation to obtain a distribution over the union of the tokens in the
two languages. Figure 4.1 shows a circuit representation of this configuration, using multiplexers
(shaded units) controlled by a selection bit bi such that the ith token τi belongs to Lbi

.

4.3 Input encoding layer

The input encoding layer also uses multiplexers to direct the input token to the upstream LSTM
cell. Two dummy tokens #0 and #1 are added to L0 and L1 respectively, to use as inputs to
the downstream LSTM cell. The input tokens are encoded using an embedding layer of the
network (one for each language), which is trained along with the rest of the network to minimize
a cross-entropy loss function.

An illustration of how a generic stream of input tokens will be broken into two separate input
streams is shown in Figure 4.2. Here, the dummy tokens are labelled as < sw_e > and < sw_m >

respectively.

4.4 Output combination layer

As indicated in Figure 4.1, we obtain two sets of outputs (each from the corresponding LSTM
unit) in different vocabularies. We have tried various variants to combine the outputs and pass the
gradients in a meaningful manner, of which some are described below.

4.4.1 Common Softmax

This is the output layer setting shown in Figure 4.3 and as implemented in Figure 4.1. We directly
combine the outputs of the two cells and pass it through a common softmax layer. The obtained

Figure 4.3: Common Softmax Output Combination Layer

distribution is now used to compute the cross-entropy loss. The gradients (as indicated in the
figure by red arrows) are passed through the common softmax into both the LSTM units per input
token and both are trained simultaneously.

4.4.2 Trainable switch parameter

Figure 4.4 illustrates the trainable switch parameter setting of output combination layer. Here
the outputs from each LSTM unit are directly passed on to the individual softmax layers, whose
distributions are further used to compute the individual losses. The final loss is computed as an
interpolation between the individual losses which is parametrized be a switch parameter, which
is trained simultaneously as well. In such a setting, gradients (as indicated in the figure by red
arrows) are passed only to a single LSTM per input token and training happens in turns for the
LSTM units.

The perplexity numbers as observed by experimentation with this setting were not at par with
the perplexities obtained by the common softmax output layer combination.

4.5 Context Sharing

We introduce the notion of context sharing between the LSTMs to facilitate cross-lingual context
sharing for better modelling of language at switching points. There are various variants for the
same which have been tried out, some of which are briefly explained below.

Figure 4.4: Trainable switch parameter Output Combination Layer

4.5.1 No sharing

This setting is inspired from the idea of no-context sharing in n-gram DLMs. Here, both the LSTM
units are trained independently of the other without sharing any common information.

4.5.2 Direct sharing

This setting is explained in the implementation details in Section 4.2, where the context between
the LSTM units are shared by upstream-downstream LSTM architecture. Here the LSTM unit
(upstream) corresponding to the language of the current input token τ is run and the corresponding
updated context is then passed to the other LSTM unit (downstream). Due to this direct sharing
of context, the training results in updating weights for both the LSTMs.

4.5.3 Damped sharing

This is a slight variant of the direct sharing explained above, but instead of directly passing the
entire context, we passed a damped version of the context. The damped context was the original
context multiplied with a damping factor of α (where 0.0 < α < 1.0) which was used in the
downstream LSTM unit. The parameter α had been finely tuned.

4.5.4 Masked sharing

This variant can be thought of as an interpolation between no sharing and direct sharing. Here,
we don’t share the entire context but only a part of the context. The entire context is split into
language-specific (or LSTM specific) contexts. During sharing of context, the part of the context

specific to the upstream LSTM unit will be masked out and only the remaining context will be
shared to the downstream LSTM unit. This motivates the LSTM units to learn language-specific
and cross-lingual contexts separately and better.

Amongst all the above four settings of context sharing, the best one which gave the highest
perplexity instruments was the one of direct sharing.

Chapter 5

Same-Source Pre-Training

Building robust LMs for code-switched text is challenging due to the lack of availability of large
amounts of training data. One solution is to artificially generate code-switched to augment the
training data. We propose a variant of this approach – called same-source pretraining – in which
the actual training data itself is used to train a generative model, and the data sampled from this
model is used to pretrain the language model.

Same-source pretraining can leverage powerful training techniques for generative models to
train a language model. We note that the generative models by themselves are typically trained to
minimize a different objective function (e.g., a discrimination loss) and need not perform well as
language models.1 There are various techniques and models to generate this synthetic data and
we explore a few of them, as described below.

5.1 Naïve Sampling

We train the base RNNLM using the maximum likelihood training paradigm (based on the
cross-entropy loss) on the training data. During inference in order to generate artificial data, at
every time step, we sample from the output layer of the RNNLM given the history. Here we
sample directly from the RNNLM, hence the name "Naïve Sampling".

1In our experiments, we found the perplexity measures for the generative models to be an order of magnitude larger than
that of the LMs we construct.

14

5.2 Scheduled Sampling

The above model based on Naïve Sampling tends to suffer from the problem of exposure bias during
inference when the model generates a text sequence by conditioning on previous tokens that may
have never appeared during training. Bengio et al. [6] proposed to bridge this gap between the
training and inference stages by using model predictions to synthesize prefixes of text that are
used during training, rather than using the actual text tokens.

5.3 SeqGAN

A more promising alternative to generate text sequences was recently proposed by Yu et al. [31]
where sequence generation is modelled in a generative adversarial network (GAN) based frame-
work. This model – referred to as “SeqGAN" – consists of a generator RNN and a discriminator
network trained as a binary classifier to distinguish between real and generated sequences and
both are trained using the adversarial training paradigm. A typical model trained by the standard
GAN paradigm doesn’t yield promising results as text generation is discrete token generation
task wherein discrete outputs make it difficult to pass the gradients from the discriminator to the
generator. The main innovation of SeqGAN is to train the generative model using policy gradients
(inspired by reinforcement learning) which helps bypass the generator differentiation problem. It
also uses the discriminator to determine the reward function.

5.4 D-RNNLM SeqGAN

As the name suggests, this is just a small variant of the SeqGAN model wherein we use D-RNNLM
(described in Chapter 4) architecture in the generator instead of the RNN architecture as in the
traditional SeqGAN model. The remaining components and the training paradigm of the model
remain the same.

The perplexity numbers with pre-training using samples generated from Naive and Scheduled
Sampling (Dev - 84.63 and Test - 70.66) were nearly similar and poor compared to that using
SeqGAN generated samples (Dev - 79.16 and Test - 65.96).

Chapter 6

Using External Knowledge

Till now we explored various mechanisms and techniques to best use the available limited code-
switched data to model the language. Though the amount of code-switched data is quite limited,
but the amount of monolingual data for the individual languages is far more in abundance
relatively. Hence, it would be prudent to use external knowledge derived from this abundant data
to improve upon our baseline language models.

At first, we could directly use the monolingual data for the individual languages as a supple-
mentary source of data to train the language models. Other derived sources of external knowledge
include using pre-trained word embeddings as a better initialization. Apart from the data itself,
we could as well use various semantic features derived for the data like POS tags, language ids,
brown word clusters, etc [3] to better model code-switched text. We can also use translation tables
to artificially generate code-switched text from the monolingual data. Each of these are further
described in detail below.

6.1 Additional Monolingual Data

The most simple way of using derived external knowledge is to use it as additional data to pre-
train the network. Code-switched text for most pairs of languages is limited, while monolingual
data for them is abundant and thus, this additional data can be used to pre-train the network
to provide a good initialisation. The order of training follows a simple routine of (1) training on
the additional monolingual data (Pre-training) and (2) training the pre-trained network on the
code-switched text. We tried various mixes of the additional monolingual data to best pre-train
the model and found that a random mix works the best.

16

6.2 Pre-trained Embeddings

A substitute to pre-train the network apart from using additional data is to directly use pre-trained
embeddings for initialisation. There are various sources for the same, one of which we used
was FastText, which are word embeddings for several languages made available by Facebook
Research [17].

For multilingual word embeddings, Facebook Research also recently released a technique
called Multilingual Unsupervised and Supervised Embeddings, which can be used to align the mono-
lingual embeddings to a common space. The technique uses three different phases - (1) Domain-
Adversarial learning (2) Refinement procedure by applying Procrustes solution (3) Translation
using CSLS (Cross-domain Similarity Local Scaling) distance metric [11].

We tried using these sources of pre-trained embeddings, but they didn’t improve over the
baseline numbers. This can be attributed to a poor overlap of words between the data corpus and
embedding dictionary. Another reason could be the poor alignment between the English and the
Mandarin embedding space.

6.3 Syntactic and Semantic Features

Another way of using external knowledge is to externally derive semantic and syntactic features.
These features can be readily used along with the text for better modelling of text. Even though
the structure and syntax of the code-switched text is different, these features will definitely aid in
stretches of monolingual text. Inspired by use of such features used in Factored Language Models
(FLMs) [2, 3], we use POS tags, brown word clusters and language ids along with the raw text for
training.

6.4 Artificially Derived Data

One of the simplest ways to artificially generate code-switched data is to use translation tables for
the language pairs and artificially introduce code-switching in the monolingual text by simple
heuristics. We use the abundant monolingual data as the base data and Google Translate API to
generate the word-level translation table. We describe both the heuristics below.

• Single Parameter: Wick et al. [29] suggested a heuristic to replace a word by it’s translated coun-
terpart with a fixed probability and obtained better bilingual embeddings using pre-training
on such additional artificial code-switched data. Such a heuristic is parametrized by a single

parameter i.e. fixed probability p which had been finely tuned.

sw(wt) = Bernoulli(p)

• Dual Parameter: To overcome the challenges posed by the single parameter setting, we intro-
duce another degree of freedom in the form of a parameter. The parameters (p1 and p2) signify
the probability to switch from L1 and L2 respectively. Instead of fine-tuning the parameters,
we use the MLE (Maximum Likelihood Estimate) for these parameters based on the original
code-switched data.

sw(wt|wt−1 = L1) = Bernoulli(p1)

sw(wt|wt−1 = L2) = Bernoulli(p2)

On analysis of the heuristics, we find that since the first heuristic has only one parameter, it
can’t model the code-switching of the two languages separately. The generated samples had very
few long stretches of monolingual text, which is quite different from the true code-switched text.
On the other hand, the second heuristic doesn’t have this drawback.

We tried both the heuristics to generate samples and pre-train the LM. To compare, we generate
a fair baseline where we use equivalent amount of monolingual data as that of derived data
to pre-train the model. We expect that pre-training using code-switched data should provide
lesser perplexity as compared to pre-training with monolingual data. The perplexity numbers are
summarized in Table 6.1.

Dev Test

Single Parameter 76.63 63.54

Dual Parameter 76.13 63.3

Fair Baseline 75.11 62.53

Table 6.1: Summary of perplexities of pre-training using artificially derived data.

Firstly, the dual parameter derived data performs better than the single parameter derived
data. Secondly, we observe that the this pre-training doesn’t beat our baseline and performs worse.
This can be attributed to a loss of structure by blindly replacing words between the languages and
depicted in the example below.

Original Sentence: I love watching movies.
Artificially generated sentence: Mein mohabbat watching movies.

Hence, we conclude that mere replacing words via translation tables isn’t the best way to
generate code-switched data. But, it can be improved by replacing at phrase level using a larger
translation table.

Chapter 7

Experiments and Results

As our approaches to better model code-switched text were split into two major regimes, our
experiments have also been organised in a similar fashion - (1) N-gram LMs and (2) RNNLMs

7.1 Data description

For experiments in both the approaches, we make use of the SEAME corpus [21] which is a
conversational Mandarin-English code-switching speech corpus. It comprises of speech segments
of conversations and interviews of speakers who are natively speak Mandarin and use English for
code-switching. Hence, the base language here is Mandarin.

Preprocessing of data. Apart from the code-switched speech, the SEAME corpus comprises of
a) words of foreign origin (other than Mandarin and English) b) incomplete words c) unknown
words labeled as 〈unk〉, and d) mixed words such as bleach跟, cause就是, etc.. Since it was
difficult to obtain pronunciations for these words, we removed utterances that contained any of
these words. A few utterances contained markers for non-speech sounds like laughing, breathing,
etc. Since our focus in this work is to investigate language models for code-switching, ideally
without the interference of these non-speech sounds, we excluded these utterances from our task.
After adopting our preprocessing steps, we saw an overall reduction of ≈ 15% compared to the
original corpus.

19

7.2 N-gram LM

7.2.1 Data distribution

We construct training, development and test sets from the preprocessed SEAME corpus data
using a 60-20-20 split. Table 7.1 shows detailed statistics of each split. The development and
evaluation sets were chosen to have 37 and 30 random speakers each, disjoint from the speakers in
the training data.1 The out-of-vocabulary (OOV) rates on the development and test sets are 3.3%
and 3.7%, respectively.

Train Dev Test

Speakers 90 37 30

Duration (hrs) 56.6 18.5 18.7

Utterances 54, 020 19, 976 19, 784

Tokens 539, 185 195, 551 196, 462

Table 7.1: Statistics of the dataset

7.2.2 Perplexity experiments

We used the SRILM toolkit [26] to build all our LMs. The baseline LM is a smoothed bigram
LM estimated using the code-switched text which will henceforth be referred to as mixed LM.
Our DLM was built using two monolingual bigram LMs. (The choice of bigram LMs instead
of trigram LMs will be justified later in Section 8.1.4). Table 7.2 shows the perplexities on the
validation and test sets using both Good Turing and Kneser-Ney smoothing techniques. DLMs
clearly outperform mixed LMs on both the datasets. All subsequent experiments use Kneser-Ney
smoothed bigram LMs as they perform better than the Good Turing smoothed bigram LMs.

Smoothing
Technique

Dev Test
mixed LM DLM mixed LM DLM

Good Turing 338.2978 329.1822 384.5164 371.1112
Kneser-Ney 329.6725 324.9268 376.0968 369.9355

Table 7.2: Perplexities on the dev/test sets using mixed LMs and DLMs with different smoothing techniques.

We also evaluate perplexities by reducing the amount of training data to 1
2 or 1

3 of the original
training data (shown in Table 7.3). As we reduce the training data, the improvements in perplexity
of DLM over mixed LM further increase, which validates our hypothesis that DLMs are capable of
generalizing better. Section 5 elaborates this point further.

1We note that choosing fewer speakers in the development and test sets led to high variance in the observed results.

Training
data

Dev Test
mixed LM DLM mixed LM DLM

Full 329.6725 324.9268 376.0968 369.9355
1/2 362.0966 350.5860 400.5831 389.7618
1/3 368.6205 356.012 408.562 394.2131

Table 7.3: Kneser-Ney smoothed bigram dev/test set perplexities using varying amounts of training data

7.2.3 ASR experiments

All the ASR systems were built using the Kaldi toolkit [24]. We used standard MFCC+delta+double-
delta features with fMLLR transforms to build speaker-adapted triphone models with 4200 tied-
state triphones, henceforth referred to as “SAT” models. We also build time delay neural network
(TDNN)-based acoustic models using i-vector based features (referred to as “TDNN+SAT"). Finally,
we also re-scored lattices generated by the “TDNN+SAT" model with an RNNLM [15] (referred to
as “RNNLM Rescoring"), trained using Tensorflow. 2 We trained a single-layer RNN with 200
hidden units in the LSTM cell.

The pronunciation lexicon was constructed from CMUdict [28] and THCHS30 dictionary [12]
for English and Mandarin pronunciations, respectively. Mandarin words that didn’t appear in
THCHS30 were mapped into Pinyin using a freely available Chinese to Pinyin converter.3 We
manually merged the phone sets of Mandarin and English (by mapping all the phones to IPA)
resulting in a phone inventory of size 105.

To evaluate the ASR systems, we treat English words and Mandarin characters as separate
tokens and compute token error rates (TERs) as discussed in [27]. Table 7.4 shows TERs on the
dev/test sets using both mixed LMs and DLMs. DLM performs better or at par with mixed LM
and at the same time, captures a significant amount of complementary information which we
leverage by combining lattices from both systems. The improvements in TER after combining the
lattices are statistically significant (at p < 0.001) for all three systems, which justifies our claim of
capturing complementary information. Trigram mixed LM performance was worse than bigram
mixed LM; hence we adopted the latter in all our models (further discussed in Section 8.1.4). This
demonstrates that obtaining significant performance improvements via LMs on this task is very
challenging.

Table 7.5 shows all the TER numbers by utilizing only 1
2 of the total training data. The combined

models continue to give significant improvements over the individual models. Moreover, DLMs
consistently show improvements on TERs compared to mixed LMs in the 1

2 training data setting.

2This rescoring was implemented using the tfrnnlm binary provided by Kaldi [24] developers.
3https://www.chineseconverter.com/en/convert/chinese-to-pinyin
1statistically significant improvement (at p < 0.001)

https://www.chineseconverter.com/en/convert/chinese-to-pinyin

ASR system Data mixed LM DLM combined

SAT
Dev 45.59 45.59 44.93∗

Test 47.43 47.48 46.96∗

TDNN+SAT
Dev 35.20 35.26 34.91∗

Test 37.42 37.35 37.17∗

RNNLM Rescoring
Dev 34.21 34.11 33.85∗

Test 36.64 36.52 36.37∗

Table 7.4: TERs using mixed LMs and DLMs

ASR system Data mixed LM DLM combined

SAT
Dev 48.48 48.17 47.671

Test 49.07 49.04 48.52∗

TDNN+SAT
Dev 40.59 40.48 40.12∗

Test 41.34 41.32 41.13∗

RNNLM Rescoring
Dev 40.20 40.09 39.84∗

Test 40.98 40.90 40.72∗

Table 7.5: TERs with 1
2 training data

Train Dev Test

Utterances 74, 927 9, 301 9, 552

Tokens 977, 751 131, 230 114, 546

English Tokens 316, 726 30, 154 50, 537

Mandarin Tokens 661, 025 101, 076 64, 009

Table 7.6: Statistics of data splits derived from SEAME.

7.3 RNNLMs

7.3.1 Data Distribution & Tokenisation

The training, development and test sets split that we use here is a random 80-10-10 split (Speakers
were kept disjoint across these datasets). We increase the training data here to build a strong and
robust LM and maximise performance gains. Table 7.6 shows more details about our datasets.

Also, another major change in the datasets is the tokenisation of the Mandarin text. Unlike
previous dataset, here we break Mandarin words into characters. Though the SEAME corpus
provided word boundaries for Mandarin text, we used Mandarin characters as individual tokens
since a large proportion of Mandarin words appeared very sparsely in the data. Using Mandarin
characters as tokens helped alleviate this issue of data sparsity; also, applications using Mandarin

w/o syntactic features with syntactic features
w/o mono. data with mono. data w/o mono. data with mono. data
Dev Test Dev Test Dev Test Dev Test

Baseline 89.60 74.87 74.06 61.66 81.87 68.23 71.04 59.00

D-RNNLM 88.68 72.29 72.41 60.73 81.01 66.26 70.83 59.04

With RNNLM SeqGAN 79.16 65.96 72.51 60.56 77.30 63.75 68.43 55.71

With D-RNNLM SeqGAN 78.63 65.41 72.33 60.30 77.19 63.63 67.79 55.60

Table 7.7: Development set and test set perplexities using RNNLMs and D-RNNLMs with various pretraining
strategies.

text are typically evaluated at the character level and do not rely on having word boundary
markers [27].

7.3.2 Improvements over Baseline

This section will explore the benefits of both our proposed techniques – (1) using D-RNNLMs and
(2) using text generated from SeqGAN for pretraining – in isolation and in combination. This
section focuses only on the numbers listed in the first two columns of Table 7.7.

Baseline: The Baseline model is a 1-layer LSTM LM with 512 hidden nodes, input and output
embedding dimensionality of 512, trained using SGD with an initial learning rate of 1.0 (decayed
exponentially after 80 epochs at a rate of 0.98 till 100 epochs) The development and test set
perplexities using the baseline are 89.60 and 74.87, respectively.

Using D-RNNLMs: The D-RNNLM is a 1-layer language model with each LSTM unit having
512 hidden nodes. The training paradigm is similar to the above-mentioned setting for the baseline
model.4 We see consistent improvements in test perplexity when comparing a D-RNNLM with an
RNNLM (i.e. 74.87 drops to 72.29).5

Using SeqGAN: Next, we use text generated from a SeqGAN model to pretrain the RNNLM.6

We use our best trained RNNLM baseline as the generator within SeqGAN. We sample 157,440
sentences (with a fixed sentence length of 20) from the SeqGAN model; this is thrice the amount of
code-switched training data. We first pretrain the baseline RNNLM with this sampled text, before

4D-RNNLMs have a few additional parameters. However, increasing the capacity of an RNNLM to exactly match this
number makes its test perplexity worse; RNNLM with 720 hidden units gives a development set perplexity of 91.44 and
1024 hidden units makes it 91.46.

5Since D-RNNLMs use language ID information, we also trained a baseline RNNLM with language ID features; this
did not help reduce the baseline test perplexities.

6To implement SeqGAN, we use code from https://github.com/LantaoYu/SeqGAN.

https://github.com/LantaoYu/SeqGAN

training it again on the code-switched text. This gives significant reductions in test perplexity,
bringing it down to 65.96 (from 74.87).

Combination: Finally, we combine both our proposed techniques by replacing the generator
with our best-trained D-RNNLM within SeqGAN. Although there are other ways of combining
both our proposed techniques, e.g. pretraining a D-RNNLM using data sampled from an RNNLM
SeqGAN, we found this method of combination to be most effective. We see modest but consistent
improvements with D-RNNLM SeqGAN over RNNLM SeqGAN in Table 7.7, further validating
the utility of D-RNNLMs.

7.3.3 Using External Knowledge

This section will explain the experiments conducted using two additional resources (1) monolingual
text for pretraining and (2) a set of syntactic features used as additional input to the RNNLMs
that further improve baseline perplexities. We show that our proposed techniques continue to
outperform the baselines albeit with a smaller margin.

Monolingual Data: We used additional monolingual text in the candidate languages (i.e. English
and Mandarin) to pretrain the RNNLM and D-RNNLM models. We used transcripts from the
Switchboard corpus7 for English; AIShell8 and THCHS309 corpora for Mandarin monolingual text
data. This resulted in a total of ≈3.1 million English tokens and ≈2.5 million Mandarin tokens.

The summary of improvements in perplexity by using monolingual data is summarized in
the third and fourth columns of Table 7.7. We observe a great drop in perplexity for baseline and
D-RNNLM numbers and significant drop for other settings as well. The best development and test
perplexities under this setting are 72.33 and 60.30 respectively obtained by training by D-RNNLM
SeqGAN pre-training.

Semantic and Syntactic features: We used an additional set of input features to the RNNLMs
and D-RNNLMs that were found to be useful for code-switching in prior work [2]. The feature set
included part-of-speech (POS) tag features and Brown word clusters [8], along with a language ID
feature. We extracted POS tags using the Stanford POS-tagger10 and we clustered the words into
70 classes using the unsupervised clustering algorithm by [8] to get Brown cluster features.

7http://www.openslr.org/5/
8http://www.openslr.org/33/
9http://www.openslr.org/18/

10https://nlp.stanford.edu/software/tagger.shtml

https://nlp.stanford.edu/software/tagger.shtml

Improvements by using syntactic features only under various settings are summarized in the
fifth and sixth columns of Table 7.7. We see relatively significant perplexity drops as compared to
the simple baseline. The drops are lesser than those compared to using additional monolingual
data though.

Combination: We combine both the variants of using additional monolingual data and using
semantic and syntactic features whose results are summarized in the last two columns. We use
the similar taggers to extract these features for the additional data. We observe that the best
improvements are recorded for this setting with the best perplexity numbers of 67.79 and 55.60 for
development and test respectively using D-RNNLM SeqGAN pre-training.

Overall, the last six columns in Table 7.7 show the utility of using either one of these resources
or both of them together (shown in the last two columns). The perplexity reductions are largest
(compared to the numbers in the first two columns) when combining both these resources together.
Interestingly, all the trends we observed in Section 7.3.2 still hold. D-RNNLMs still consistently
perform better than their RNNLM counterparts and we obtain the best overall results using
D-RNNLM SeqGAN.

Chapter 8

Discussion

Code-switched data corpora tend to exhibit very different linguistic characteristics compared to
standard monolingual corpora, possibly because of the informal contexts in which code-switched
data often occurs, and also possibly because of the difficulty in collecting such data. It is possible
that the gains made by our language model are in part due to such characteristics of the corpus
we use, SEAME. (We note that this corpus is by far the most predominant one used to benchmark
speech recognition techniques for code-switched speech.)

8.1 N-gram LMs

In this section we analyze the SEAME corpus and try to further understand our results in the light
of its characteristics in context of n-gram LMs.

8.1.1 Code-switching boundaries

Code-switched bigrams with counts of ≤ 10 occupy 87.5% of the total number of code-switched
bigrams in the training data. Of these, 55% of the bigrams have a count of 1. This suggests that
context across code-switching boundaries cannot significantly help a language model built from
this data. Indeed, the DLM construction in this work discards such context, in favor of a simpler
model.

26

(a) (b)

Figure 8.1: Comparison of fraction of data vs frequency of n-grams in code-mixed text and monolingual text.

8.1.2 n-gram token distribution

We compare the unigram distribution of a code-switched corpus (SEAME corpus) with a standard
monolingual corpus (PTB corpus). A glaring difference is observed in their distributions (Figure 8.1-
a) with significantly high occurrence of less-frequent unigrams in the code-switched corpus, which
makes them rather difficult to capture using standard n-gram models (which often fall back to a
unigram model). The DLM partially compensates for this by emulating a “class-based language
model”, using the only class information readily available in the data (namely, the language of
each word).

8.1.3 Illustrative examples

Below, we analyze perplexities of the mixed LM and the DLM on some representative sentences
from the SEAME corpus, to illustrate how the performances of the two models compare.

Sentence Mixed LM DLM
perplexity perplexity

我们的 total是五十七 920.8 720.4

哦我没有 meeting了 92.2 75.9

okay kay让我拿出我的 calculator 1260.3 1284.6

the roomie lives in serangoon right 2302.1 1629.3

oh他拿 third class他差一点点他的 f. y. p. screwed up他拿到 b
minus c plus

299.7 257.1

We observe that when less frequent words appear at switching points (like total, meeting, etc.),

the DLM outperforms the mixed LM by a significant margin as illustrated in the first two sentences
above. In cases of highly frequent words occurring at switching points, the DLM performs on par
with or slightly worse than the mixed LM, as seen in the case of the third sentence. The DLM also
performs slightly better within long stretches of monolingual text as seen in the fourth sentence.
On the final sentence, which has multiple switches and long stretches of monolingual text, again
the DLM performs better. As these examples illustrate, DLMs tend to show improved performance
at less frequent switching points and within long stretches of monolingual text.

8.1.4 Effect of Trigrams

In standard monolingual datasets, trigram models consistently outperform bilingual models.
However, in our code-switched corpus we do not find a pronounced difference between a bigram
and a trigram model. This could be attributed to the fact that the number of highly frequent
trigrams in our corpus is lesser in comparison to that in the monolingual dataset (PTB) (Figure 8.1-
b). Further, in our ASR experiments we observe that using the trigram model adversely affects
performance (e.g., the error rate for trigram LM (TDNN+SAT) on test set is 37.61!) As such, we
have focused on bigram LMs in this work.

8.2 RNNLMs

8.2.1 Perplexity Analysis

Table 8.1 shows how the perplexities on the development set from six of our prominent models
decompose into the perplexities contributed by English tokens preceded by English tokens (Eng-
Eng), Eng-Man, Man-Eng and Man-Man tokens. This analysis reveals a number of interesting
observations. 1) The D-RNNLM mainly improves over the baseline on the “switching tokens”,
Eng-Man and Man-Eng. 2) The RNNLM with monolingual data improves most over the baseline
on “the monolingual tokens”, Eng-Eng and Man-Man, but suffers on the Eng-Man tokens. The
D-RNNLM with monolingual data does as well as the baseline on the Eng-Man tokens and
performs better than “Mono RNNLM” on all other tokens. 3) RNNLM SeqGAN suffers on the
Man-Eng tokens, but helps on the rest; in contrast, D-RNNLM SeqGAN helps on all tokens when
compared with the baseline.

8.2.2 SeqGAN Text Quality

As an additional measure of the quality of text generated by RNNLM SeqGAN and D-RNNLM
SeqGAN, in Table 8.2, we measure the diversity in the generated text by looking at the increase in

Eng-Eng Eng-Man Man-Eng Man-Man

RNNLM 133.18 157.18 2617.28 34.98
D-RNNLM 140.37 151.38 2452.16 32.89

Mono RNNLM 101.61 181.28 2510.48 30.00
Mono D-RNNLM 101.66 156.44 2442.81 29.64

RNNLM SeqGAN 120.28 154.44 2739.85 30.40
D-RNNLM SeqGAN 120.26 149.68 2450.85 30.60

Table 8.1: Decomposed perplexities on the development set on all four types of tokens from various models.

the number of unique n-grams with respect to the SEAME training text. D-RNNLM SeqGAN is
clearly better at generating text with larger diversity, which could be positively correlated with the
perplexity improvements shown in Table 7.7.

SeqGAN-RNNLM SeqGAN-DLM

Bigram 25.57 31.33

Trigram 75.88 83.86

Quadgram 137.98 145.71

Table 8.2: Percentage of new n-grams generated.

Chapter 9

Other Explorations and Future Work

We introduced DLMs and showed robust improvements over mixed LMs in perplexity for code-
switched speech. While the performance improvements for the ASR error rates are modest, they
are achieved without the aid of any external language resources and without any computational
overhead. We observe significant ASR improvements via lattice combination of DLMs and the
standard mixed LMs. A future direction would be to investigate properties of code-switched text
which can be incorporated in our DLM setting.

D-RNNLMs and same-source pretraining provide significant perplexity reductions for code-
switched LMs. These techniques may be of more general interest. Leveraging generative models
to train LMs is potentially applicable beyond code-switching; D-RNNLMs could be generalized
beyond LMs, e.g. speaker diarization. We leave these for future work to explore.

There are some other ideas which seem relevant and can be explored. Using lower-levels
of representations like bytes seem to improve performance in various applications like speech
recognition in low-resource setting. We used byte-stream inputs for RNNLMs to explore this idea
in our domain but the results were poor as compared to the baseline RNNLM.

Other ideas which can be explored include improving heuristics to generate better artificially
code-switched data, which can act as a secondary source of independent code-switched data.
Another way to generate code-switched data is to use MaskGAN [13], another variant of generative
models which uses a actor-critic variant of REINFORCE.

30

Bibliography

[1] Heike Adel, Katrin Kirchhoff, Ngoc Thang Vu, Dominic Telaar, and Tanja Schultz. Comparing
approaches to convert recurrent neural networks into backoff language models for efficient
decoding. In Proceedings of Interspeech, 2014.

[2] Heike Adel, Dominic Telaar, Ngoc Thang Vu, Katrin Kirchhoff, and Tanja Schultz. Combining
recurrent neural networks and factored language models during decoding of code-switching
speech. In Proceedings of Interspeech, 2014.

[3] Heike Adel, Ngoc Thang Vu, Katrin Kirchhoff, Dominic Telaar, and Tanja Schultz. Syntactic
and semantic features for code-switching factored language models. Proceedings of IEEE
Transactions on Audio, Speech, and Language Processing, 23(3):431–440, 2015.

[4] Peter Auer. Code-switching in conversation: Language, interaction and identity. Routledge, 2013.

[5] Ashutosh Baheti, Sunayana Sitaram, Monojit Choudhury, and Kalika Bali. Curriculum design
for code-switching: Experiments with language identification and language modeling with
deep neural networks. In Proceedings of ICON, pages 65–74, 2017.

[6] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. In Proceedings of NIPS, pages 1171–1179,
2015.

[7] K Bhuvanagiri and Sunil Kopparapu. An approach to mixed language automatic speech
recognition. Proceedings of Oriental COCOSDA, Kathmandu, Nepal, 2010.

[8] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and Jenifer C Lai.
Class-based n-gram models of natural language. Computational linguistics, 18(4):467–479, 1992.

[9] Özlem Çetinoglu, Sarah Schulz, and Ngoc Thang Vu. Challenges of computational processing
of code-switching. EMNLP 2016, page 1, 2016.

[10] Joyce YC Chan, PC Ching, Tan Lee, and Helen M Meng. Detection of language boundary in
code-switching utterances by bi-phone probabilities. In Proceedings of International Symposium
on Chinese Spoken Language Processing, pages 293–296. IEEE, 2004.

31

[11] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Word translation without parallel data. arXiv preprint arXiv:1710.04087, 2017.

[12] Zhiyong Zhang Dong Wang, Xuewei Zhang. THCHS-30 : A free Chinese speech corpus, 2015.

[13] William Fedus, Ian Goodfellow, and Andrew M Dai. Maskgan: Better text generation via
filling in the _. arXiv preprint arXiv:1801.07736, 2018.

[14] Saurabh Garg, Tanmay Parekh, and Preethi Jyothi. Dual language models for code switched
speech recognition. In Proceedings of Interspeech, 2018.

[15] Dongji Gao Yiming Wang Ke Li Nagendra Goel Yishay Carmie Daniel Povey Sanjeev Khu-
danpur Hainan Xu, Tongfei Chen. A pruned rnnlm lattice-rescoring algorithm for automatic
speech recognition. In Proceedings of ICASSP. IEEE, 2017.

[16] David Imseng, Hervé Bourlard, Mathew Magimai Doss, and John Dines. Language dependent
universal phoneme posterior estimation for mixed language speech recognition. In Proceedings
of ICASSP, pages 5012–5015, 2011.

[17] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and Tomas
Mikolov. Fasttext.zip: Compressing text classification models. arXiv preprint arXiv:1612.03651,
2016.

[18] Ying Li and Pascale Fung. Improved mixed language speech recognition using asymmetric
acoustic model and language model with code-switch inversion constraints. In Proceedings of
ICASSP, pages 7368–7372. IEEE, 2013.

[19] Ying Li and Pascale Fung. Language modeling with functional head constraint for code
switching speech recognition. In Proceedings of EMNLP, 2014.

[20] Ying Li, Pascale Fung, Ping Xu, and Yi Liu. Asymmetric acoustic modeling of mixed language
speech. In Proceedings of ICASSP, pages 5004–5007, 2011.

[21] Dau-Cheng Lyu, Tien-Ping Tan, Eng-Siong Chng, and Haizhou Li. An analysis of a Mandarin-
English code-switching speech corpus: SEAME. Proceedings of Age, 21:25–8, 2010.

[22] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Eleventh Annual Conference of the International
Speech Communication Association, 2010.

[23] Shana Poplack. Sometimes ill start a sentence in spanish y termino en espaol. In Proceedings
of Linguistics, pages 581–618, 1990.

[24] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra
Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, et al. The kaldi speech
recognition toolkit. In Proceedings of ASRU, 2011.

[25] David Sankoff. A formal production-based explanation of the facts of code-switching. In
Proceedings of Bilingualism: language and cognition, pages 39–50, 1998.

[26] Andreas Stolcke. SRILM – an extensible language modeling toolkit. In Proceedings of Interspeech,
2002.

[27] Ngoc Thang Vu, Dau-Cheng Lyu, Jochen Weiner, Dominic Telaar, Tim Schlippe, Fabian
Blaicher, Eng-Siong Chng, Tanja Schultz, and Haizhou Li. A first speech recognition system
for Mandarin-English code-switch conversational speech. In Proceedings of ICASSP, pages
4889–4892. IEEE, 2012.

[28] Robert L Weide. The CMU pronouncing dictionary. URL: http://www. speech. cs. cmu.
edu/cgibin/cmudict, 1998.

[29] Michael Wick, Pallika Kanani, and Adam Craig Pocock. Minimally-constrained multilingual
embeddings via artificial code-switching.

[30] Ching Feng Yeh, Chao Yu Huang, Liang Che Sun, and Lin Shan Lee. An integrated framework
for transcribing Mandarin-English code-mixed lectures with improved acoustic and language
modeling. In Proceedings of Chinese Spoken Language Processing (ISCSLP), 2010 7th International
Symposium on, pages 214–219. IEEE, 2010.

[31] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial
nets with policy gradient. In Proceedings of AAAI, pages 2852–2858, 2017.

	Introduction
	N-Gram LMs
	RNNLMs

	Related Work
	N-gram Dual Language Model
	The 2-player Game
	Framework
	Implementation as FST
	Monolingual LMs for the DLM construction

	Dual RNNLM
	The Idea
	Dual LSTM cell
	Input encoding layer
	Output combination layer
	Common Softmax
	Trainable switch parameter

	Context Sharing
	No sharing
	Direct sharing
	Damped sharing
	Masked sharing

	Same-Source Pre-Training
	Naïve Sampling
	Scheduled Sampling
	SeqGAN
	D-RNNLM SeqGAN

	Using External Knowledge
	Additional Monolingual Data
	Pre-trained Embeddings
	Syntactic and Semantic Features
	Artificially Derived Data

	Experiments and Results
	Data description
	N-gram LM
	Data distribution
	Perplexity experiments
	ASR experiments

	RNNLMs
	Data Distribution & Tokenisation
	Improvements over Baseline
	Using External Knowledge

	Discussion
	N-gram LMs
	Code-switching boundaries
	n-gram token distribution
	Illustrative examples
	Effect of Trigrams

	RNNLMs
	Perplexity Analysis
	SeqGAN Text Quality

	Other Explorations and Future Work

